منابع مشابه
Mean Value Conjectures for Rational Maps
Let p be a polynomial in one complex variable. Smale’s mean value conjecture estimates |p′(z)| in terms of the gradient of a chord from (z, p(z)) to some stationary point on the graph of p. The conjecture does not immediately generalise to rational maps since its formulation is invariant under the group of affine maps, not the full Möbius group. Here we give two possible generalisations to rati...
متن کاملMean Value Bézier Maps
Bernstein polynomials are a classical tool in Computer Aided Design to create smooth maps with a high degree of local control. They are used for the construction of Bézier surfaces, free-form deformations, and many other applications. However, classical Bernstein polynomials are only defined for simplices and parallelepipeds. These can in general not directly capture the shape of arbitrary obje...
متن کاملLyapunov Spectrum for Rational Maps
We study the dimension spectrum of Lyapunov exponents for rational maps on the Riemann sphere.
متن کاملMEAN VALUE INTERPOLATION ON SPHERES
In this paper we consider multivariate Lagrange mean-value interpolation problem, where interpolation parameters are integrals over spheres. We have concentric spheres. Indeed, we consider the problem in three variables when it is not correct.
متن کاملRational homotopy stability for the spaces of rational maps
Let Holnx0(CP 1,X) be the space of based holomorphic maps of degree n from CP1 into a simply connected algebraic variety X. Under some condition we prove that the map Holnx0(CP 1,X) −→ Hol x0 (CP 1,X) obtained by compositing f ∈ Holnx0(CP 1,X) with g(z) = z, z ∈ CP1 induces rational homotopy equivalence up to some dimension, which tends to infinity as the degree grows.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex Variables and Elliptic Equations
سال: 2006
ISSN: 1747-6933,1747-6941
DOI: 10.1080/02781070500293380